Simultaneous transport of two bacterial strains in intact cores from Oyster, Virginia: biological effects and numerical modeling.

نویسندگان

  • Hailiang Dong
  • Randi Rothmel
  • Tullis C Onstott
  • Mark E Fuller
  • Mary F DeFlaun
  • Sheryl H Streger
  • Robb Dunlap
  • Madilyn Fletcher
چکیده

The transport characteristics of two adhesion-deficient, indigenous groundwater strains, Comamonas sp. strain DA001 and Erwinia herbicola OYS2-A, were studied by using intact sediment cores (7 by 50 cm) from Oyster, Va. Both strains are gram-negative rods (1.10 by 0.56 and 1.56 by 0.46 microm, respectively) with strongly hydrophilic membranes and a slightly negative surface charge. The two strains exhibited markedly different behaviors when they were transported through granular porous sediment. To eliminate any effects of physical and chemical heterogeneity on bacterial transport and thus isolate the biological effect, the two strains were simultaneously injected into the same core. DA001 cells were metabolically labeled with (35)S and tagged with a vital fluorescent stain, while OYS2-A cells were metabolically labeled with (14)C. The fast decay of (35)S allowed deconvolution of the two isotopes (and therefore the two strains). Dramatic differences in the transport behaviors were observed. The breakthrough of DA001 and the breakthrough of OYS2-A both occurred before the breakthrough of a conservative tracer (termed differential advection), with effluent recoveries of 55 and 30%, respectively. The retained bacterial concentration of OYS2-A in the sediment was twofold higher than that of DA001. Among the cell properties analyzed, the statistically significant differences between the two strains were cell length and diameter. The shorter, larger-diameter DA001 cells displayed a higher effluent recovery than the longer, smaller-diameter OYS2-A cells. CXTFIT modeling results indicated that compared to the DA001 cells, the OYS2-A cells experienced lower pore velocity, higher porosity, a higher attachment rate, and a lower detachment rate. All these factors may contribute to the observed differences in transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Bacterial Strains to Inhibit Growth of Phytophthora pistaciae under Different Electrical Conductivities

Root and crown rot (gummosis) is known as the most destructive disease affecting pistachio in Iran. The efficiency of bacterial strains to reduce the growth rate of Phytophthora pistaciae was studied under different electrical conductivities (EC, 0, 2, 4, 8, 12 ds/m). Soil and rhizosphere samples were collected from pistachio growing regions in Kerman province, Iran, during 2011 - 2012. Overall...

متن کامل

The anti-bacterial effects of magnetic iron oxide nanoparticles produced by biological method and the kinetic study of mortality of common strains in clinical infections

New properties of nano-materials have made nanotechnology the leading part of biology and medical sciences. Due to their various biomedical properties, iron-based magnetic nanoparticles (MNPs) have been highly considered by biological researchers. Nowadays, increasing resistance to antibiotics is a major problem in treating clinical infections. Finding new antibacterial agents is therefore esse...

متن کامل

Application of a vital fluorescent staining method for simultaneous, near-real-time concentration monitoring of two bacterial strains in an Atlantic coastal plain aquifer in Oyster, Virginia.

Two differentially labeled bacterial strains were monitored in near-real time during two field-scale bacterial transport experiments in a shallow aquifer in July 2000 and July 2001. Comamonas sp. strain DA001 and Acidovorax sp. strain OY-107 were grown and labeled with the vital fluorescent stain TAMRA/SE (5 [and -6]-carboxytetramethylrhodamine, succinimidyl ester) or CFDA/SE (5 [and -6]-carbox...

متن کامل

The effects of cut-off walls on repulsing saltwater based on modeling of density-driven groundwater flow and salt transport

Abstract:   A two-dimensional fully implicit finite difference model, which can be easily extended to three dimensions, is developed to study the effect of cut-off walls on saltwater intrusion into the aquifers. This model consists of a coupled system of two nonlinear partial differential equations which describe unsteady density-driven groundwater flow and solute transport. The numerica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 68 5  شماره 

صفحات  -

تاریخ انتشار 2002